Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 430
Filter
1.
Bioact Mater ; 38: 1-30, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38699243

ABSTRACT

Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.

2.
Mol Cancer ; 23(1): 88, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702734

ABSTRACT

Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Neoplasms , Ubiquitin-Specific Proteases , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Ubiquitin-Specific Proteases/antagonists & inhibitors , Ubiquitin-Specific Proteases/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals , Molecular Targeted Therapy , DNA Repair , Apoptosis/drug effects
3.
Sci Adv ; 10(18): eadk1698, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701206

ABSTRACT

Deltas are threatened by erosion due to climate change and reduced sediment supply, but their response to these changes remains poorly quantified. We investigate the abandoned Yellow River delta that has transitioned from rapid growth to ongoing deterioration due to a river avulsion removing the sediment supply. Integrating bathymetric data, process observations, and sediment transport modeling, we find that while the subaerial delta was stabilized by engineering measures, the subaqueous delta continued to erode due to intensified storms, losing 39% of its mass deposited before the avulsion. Long-term observations show that winter storms initiate scouring of the subaqueous delta, contributing up to 70% of seabed erosion. We then analyze 108 global deltas to assess subaqueous delta erosion risks and identify 17 deltas facing similar situations of sediment decline and storm intensification during the past 40 years. Our findings suggest that subaqueous delta erosion must be integrated into delta sustainability evaluations.

4.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189099, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582329

ABSTRACT

Protein ubiquitination, one of the most significant post-translational modifications, plays an important role in controlling the proteins activity in diverse cellular processes. The reversible process of protein ubiquitination, known as deubiquitination, has emerged as a critical mechanism for maintaining cellular homeostasis. The deubiquitinases (DUBs), which participate in deubiquitination process are increasingly recognized as potential candidates for drug discovery. Among these DUBs, ubiquitin-specific protease 9× (USP9X), a highly conserved member of the USP family, exhibits versatile functions in various cellular processes, including the regulation of cell cycle, protein endocytosis, apoptosis, cell polarity, immunological microenvironment, and stem cell characteristics. The dysregulation and abnormal activities of USP9X are influenced by intricate cellular signaling pathway crosstalk and upstream non-coding RNAs. The complex expression patterns and controversial clinical significance of USP9X in cancers suggest its potential as a prognostic biomarker. Furthermore, USP9X inhibitors has shown promising antitumor activity and holds the potential to overcome therapeutic resistance in preclinical models. However, a comprehensive summary of the role and molecular functions of USP9X in cancer progression is currently lacking. In this review, we provide a comprehensive delineation of USP9X participation in numerous critical cellular processes, complicated signaling pathways within the tumor microenvironment, and its potential translational applications to combat therapeutic resistance. By systematically summarizing the updated molecular mechanisms of USP9X in cancer biology, this review aims to contribute to the advancement of cancer therapeutics and provide essential insights for specialists and clinicians in the development of improved cancer treatment strategies.

5.
Int J Biol Macromol ; 268(Pt 2): 131623, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38642687

ABSTRACT

When skin is damaged or affected by diseases, it often undergoes irreversible scar formation, leading to aesthetic concerns and psychological distress for patients. In cases of extensive skin defects, the patient's life can be severely compromised. In recent years, 3D printing technology has emerged as a groundbreaking approach to skin tissue engineering, offering promising solutions to various skin-related conditions. 3D bioprinting technology enables the precise fabrication of structures by programming the spatial arrangement of cells within the skin tissue and subsequently printing skin replacements either in a 3D bioprinter or directly at the site of the defect. This study provides a comprehensive overview of various biopolymer-based inks, with a particular emphasis on chitosan (CS), starch, alginate, agarose, cellulose, and fibronectin, all of which are natural polymers belonging to the category of biomacromolecules. Additionally, it summarizes artificially synthesized polymers capable of enhancing the performance of these biomacromolecule-based bioinks, thereby composing hybrid biopolymer inks aimed at better application in skin tissue engineering endeavors. This review paper examines the recent advancements, characteristics, benefits, and limitations of biological 3D bioprinting techniques for skin tissue engineering. By utilizing bioinks containing seed cells, hydrogels with bioactive factors, and biomaterials, complex structures resembling natural skin can be accurately fabricated in a layer-by-layer manner. The importance of biological scaffolds in promoting skin wound healing and the role of 3D bioprinting in skin tissue regeneration processes is discussed. Additionally, this paper addresses the challenges and constraints associated with current 3D bioprinting technologies for skin tissue and presents future perspectives. These include advancements in bioink formulations, full-thickness skin bioprinting, vascularization strategies, and skin appendages bioprinting.

6.
Int J Biol Macromol ; 267(Pt 1): 131580, 2024 May.
Article in English | MEDLINE | ID: mdl-38688788

ABSTRACT

Despite the clinical success of tricalcium silicate (TCS)-based materials in endodontics, the inferior handling characteristic, poor anti-washout property and slow setting kinetics hindered their wider applications. To solve these problems, an injectable fast-setting TCS/ß-tricalcium phosphate/monocalcium phosphate anhydrous (ß-TCP/MCPA) cement was developed for the first time by incorporation of hydroxypropyl methylcellulose (HPMC) and ß-TCP/MCPA. The physical-chemical characterization (setting time, anti-washout property, injectability, compressive strength, apatite mineralization and sealing property) of TCS/(ß-TCP/MCPA) were conducted. Its hydration mechanism was also investigated. Furthermore, the cytocompatibility and osteogenic/odontogenic differentiation of stem cells isolated from human exfoliated deciduous teeth (SHED) treated with TCS/ß-TCP/MCPA were studied. The results showed that HPMC could provide TCS with good anti-washout ability and injectability but slow hydration process. However, ß-TCP/MCPA effectively enhanced anti-washout characteristics and reduced setting time due to faster hydration kinetics. TCS/(ß-TCP/MCPA) obtained around 90 % of injection rate and high compressive strength whereas excessive additions of ß-TCP/MCPA compromised its injectability and compressive strength. TCS/(ß-TCP/MCPA) can induce apatite deposition and form a tight marginal sealing at the dentin-cement interface. Additionally, TCS/(ß-TCP/MCPA) showed good biocompatibility and promoted osteo/odontogenic differentiation of SHED. In general, our results indicated that TCS/(ß-TCP/MCPA) may be particularly promising as an injectable bioactive cements for endodontic treatment.


Subject(s)
Calcium Compounds , Calcium Phosphates , Hypromellose Derivatives , Silicates , Silicates/chemistry , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Calcium Compounds/chemistry , Humans , Hypromellose Derivatives/chemistry , Osteogenesis/drug effects , Materials Testing , Cell Differentiation/drug effects , Compressive Strength , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Dental Cements/chemistry , Dental Cements/pharmacology , Stem Cells/drug effects , Stem Cells/cytology
7.
Drug Des Devel Ther ; 18: 1025-1034, 2024.
Article in English | MEDLINE | ID: mdl-38585256

ABSTRACT

Purpose: Explore the median effective dose of ciprofol for inducing loss of consciousness in elderly patients and investigate how frailty influences the ED50 of ciprofol in elderly patients. Patients and Methods: A total of 26 non-frail patients and 28 frail patients aged 65-78 years, with BMI ranging from 15 to 28 kg/m2, and classified as ASA grade II or III were selected. Patients were divided into two groups according to frailty: non-frail patients (CFS<4), frail patients (CFS≥4). With an initial dose of 0.3 mg/kg for elderly non-frail patients and 0.25 mg/kg for elderly frail patients, using the up-and-down Dixon method, and the next patient's dose was dependent on the previous patient's response. Demographic information, heart rate (HR), oxygen saturation (SpO2), mean blood pressure (MBP), and bispectral index (BIS) were recorded every 30 seconds, starting from the initiation of drug administration and continuing up to 3 minutes post-administration. Additionally, the total ciprofol dosage during induction, occurrences of hypotension, bradycardia, respiratory depression, and injection pain were recorded. Results: The calculated ED50 (95% confidence interval [CI]) and ED95 (95% CI) values for ciprofol-induced loss of consciousness were as follows: 0.267 mg/kg (95% CI 0.250-0.284) and 0.301 mg/kg (95% CI 0.284-0.397) for elderly non-frail patients; and 0.263 mg/kg (95% CI 0.244-0.281) and 0.302 mg/kg (95% CI 0.283-0.412) for elderly frail patients. Importantly, no patients reported intravenous injection pain, required treatment for hypotension, or experienced significant bradycardia. Conclusion: Frailty among elderly patients does not exert a notable impact on the median effective dose of ciprofol for anesthesia induction. Our findings suggest that anesthesiologists may forego the necessity of dosage adjustments when administering ciprofol for anesthesia induction in elderly frail patients.


Subject(s)
Anesthesia , Frailty , Hypotension , Aged , Humans , Frailty/drug therapy , Bradycardia/chemically induced , Hypotension/chemically induced , Hypotension/drug therapy , Pain , Unconsciousness
8.
ACS Appl Mater Interfaces ; 16(15): 18658-18670, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587811

ABSTRACT

Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.


Subject(s)
Osteogenesis , Tissue Scaffolds , Mice , Animals , Rabbits , Tissue Scaffolds/chemistry , Biomimetics , Bone Regeneration , Polyesters/chemistry , Tissue Engineering , Printing, Three-Dimensional
9.
Orthop Surg ; 16(5): 1143-1152, 2024 May.
Article in English | MEDLINE | ID: mdl-38561920

ABSTRACT

OBJECTIVE: Medial opening-wedge high tibial osteotomy (MOWHTO) is a surgical procedure to treat medial compartment osteoarthritis in the knee with varus deformity. However, factors such as patellar height (PH) and the sagittal plane's posterior tibial slope angle (PTSA) are potentially overlooked. This study investigated the impact of alignment correction angle guided by computer-designed personalized surgical guide plate (PSGP) in MOWHTO on PH and PTSA, offering insights for enhancing surgical techniques. METHODS: This retrospective study included patients who underwent 3D-printed PSGP-assisted MOWHTO at our institution from March to September 2022. The paired t-tests assessed differences in all preoperative and postoperative measurement parameters. Multivariate linear regression analysis examined correlations between PTSA, CDI (Caton-Deschamps Index), and the alignment correction magnitude. Receiver operating characteristic (ROC) curve analysis determined the threshold of the correction angle, calculating sensitivity, specificity, and area under the curve. RESULTS: A total of 107 patients were included in our study. The CDI changed from a preoperative mean of 0.97 ± 0.13 (range 0.70-1.34) to a postoperative mean of 0.82 ± 0.13 (range 0.55-1.20). PTSA changed from a preoperative mean of 8.54 ± 2.67 (range 2.19-17.55) to a postoperative mean of 10.54 ± 3.05 (range 4.48-18.05). The t-test revealed statistically significant changes in both values (p < 0.05). A significant alteration in patellar height occurred when the correction angle exceeded 9.39°. Moreover, this paper illustrates a negative correlation between CDI change and the correction angle and preoperative PTSA. Holding other factors constant, each 1-degree increase in the correction angle led to a 0.017 decrease in postoperative CDI, and each 1-degree increase in preoperative PTSA resulted in a 0.008 decrease in postoperative CDI. PTSA change was positively correlated only with the correction angle; for each 1-degree increase in the opening angle, postoperative PTS increased by 0.188, with other factors constant. CONCLUSION: This study highlights the effectiveness and precision of PSGP-assisted MOWHTO, focusing on the impact of alignment correction on PH and PTSA. These findings support the optimization of PSGP technology, which offers simpler, faster, and safer surgeries with less radiation and bleeding than traditional methods. However, PSGP's one-time use design and the learning curve required for its application are limitations, suggesting areas for further research.


Subject(s)
Osteoarthritis, Knee , Osteotomy , Patella , Surgery, Computer-Assisted , Tibia , Humans , Retrospective Studies , Osteotomy/methods , Female , Male , Middle Aged , Tibia/surgery , Patella/surgery , Adult , Osteoarthritis, Knee/surgery , Surgery, Computer-Assisted/methods , Aged , Printing, Three-Dimensional
10.
BMC Genomics ; 25(1): 306, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519923

ABSTRACT

BACKGROUND: Poplar anthracnose, which is one of the most important tree diseases, is primarily caused by Colletotrichum gloeosporioides, which has been detected in poplar plantations in China and is responsible for serious economic losses. The characteristics of 84K poplar that have made it one of the typical woody model plants used for investigating stress resistance include its rapid growth, simple reproduction, and adaptability. RESULTS: In this study, we found that the resistance of 84K poplar to anthracnose varied considerably depending on how the samples were inoculated of the two seedlings in each tissue culture bottle, one (84K-Cg) was inoculated for 6 days, whereas the 84K-DCg samples were another seedling inoculated at the 6th day and incubated for another 6 days under the same conditions. It was showed that the average anthracnose spot diameter on 84K-Cg and 84K-DCg leaves was 1.23 ± 0.0577 cm and 0.67 ± 0.1154 cm, respectively. Based on the transcriptome sequencing analysis, it was indicated that the upregulated phenylpropanoid biosynthesis-related genes in 84K poplar infected with C. gloeosporioides, including genes encoding PAL, C4H, 4CL, HCT, CCR, COMT, F5H, and CAD, are also involved in other KEGG pathways (i.e., flavonoid biosynthesis and phenylalanine metabolism). The expression levels of these genes were lowest in 84K-Cg and highest in 84K-DCg. CONCLUSIONS: It was found that PAL-related genes may be crucial for the induced resistance of 84K poplar to anthracnose, which enriched in the phenylpropanoid biosynthesis. These results will provide the basis for future research conducted to verify the contribution of phenylpropanoid biosynthesis to induced resistance and explore plant immune resistance-related signals that may regulate plant defense capabilities, which may provide valuable insights relevant to the development of effective and environmentally friendly methods for controlling poplar anthracnose.


Subject(s)
Gene Expression Profiling , Transcriptome , China
11.
BMC Chem ; 18(1): 59, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555462

ABSTRACT

VEGFR-2 kinase inhibitors are clinically approved drugs that can effectively target cancer angiogenesis. However, such inhibitors have adverse effects such as skin toxicity, gastrointestinal reactions and hepatic impairment. In this study, machine learning and Topomer CoMFA, which is an alignment-dependent, descriptor-based method, were employed to build structural activity relationship models of potentially new VEGFR-2 inhibitors. The prediction ac-curacy of the training and test sets of the 2D-SAR model were 82.4 and 80.1%, respectively, with KNN. Topomer CoMFA approach was then used for 3D-QSAR modeling of VEGFR-2 inhibitors. The coefficient of q2 for cross-validation of the model 1 was greater than 0.5, suggesting that a stable drug activity-prediction model was obtained. Molecular docking was further performed to simulate the interactions between the five most promising compounds and VEGFR-2 target protein and the Total Scores were all greater than 6, indicating that they had a strong hydrogen bond interactions were present. This study successfully used machine learning to obtain five potentially novel VEGFR-2 inhibitors to increase our arsenal of drugs to combat cancer.

12.
Toxics ; 12(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38535906

ABSTRACT

A biological treatment is the core process for removing organic pollutants from industrial wastewater. However, industrial wastewater often contains large amounts of toxic and harmful pollutants, which can inhibit the activity of microorganisms in a treatment system, precipitate the deterioration of effluent quality, and threaten water ecological security from time to time. In most of the existing anaerobic biological treatment processes, toxic effects on microorganisms are determined according to the amounts of end-products of the biochemical reactions, and the evaluation results are relatively lacking. When microorganisms contact toxic substances, changes in biological metabolic activity precede the accumulation of reaction products. As sensitive units, electroactive microorganisms can generate electrical signals, a change in which can directly reflect the toxicity level. The applications of electroactive microorganisms for the toxicity monitoring of wastewater are very promising. Further attention needs to be paid to considering the appropriate evaluation index, the influence of the environment on test results, mechanisms, and other aspects. Therefore, we reviewed the literature regarding the above aspects in order to provide a research foundation for the practical application of electroactive microorganisms in toxicant monitoring.

13.
MedComm (2020) ; 5(3): e505, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38469548

ABSTRACT

Triple-positive breast cancer (TPBC) poorly responds to current standard neoadjuvant therapy (trastuzumab plus pertuzumab and chemotherapy). Our previous MUKDEN 01 study showed a promising total pathological complete response (tpCR) rate of 30.4% with neoadjuvant pyrotinib (pan-human epidermal growth factor receptor tyrosine kinase inhibitor) plus dalpiciclib (cyclin-dependent kinase 4/6 inhibitor) and letrozole, but the efficacy remains suboptimal. This pilot study (NCT05228951) explored adding trastuzumab to this triplet neoadjuvant regimen in patients with stage II-III TPBC. The primary endpoint was tpCR (ypT0/is, ypN0) rate. Between February 2022 and June 2022, 12 patients were enrolled, and seven (58%; 95% confidence interval [CI], 27.7%-84.8%) patients achieved tpCR. The rate of residual cancer burden (RCB) 0-I was 75% (95% CI, 46.8%-91.1%). The objective response rate (ORR) was 92% (95% CI, 64.6%-98.5%). Mean Ki-67 level was significantly reduced from 45.0% (95% CI, 19.5%-70.5%) at baseline to 17.2% (95% CI, 0.7%-33.7%) after neoadjuvant therapy (p = 0.03). The most common grade 3 adverse events were diarrhea (four [33%]) and decreased neutrophil count (three [25%]). No grade 4 adverse events or treatment-related deaths occurred. This four-drug neoadjuvant regimen shows promising pathological response with an acceptable safety profile in patients with TPBC. A randomized controlled trial (NCT05638594) of this regimen is being conducted.

14.
Insights Imaging ; 15(1): 97, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536542

ABSTRACT

PURPOSE: To explore the predictive potential of intratumoral and multiregion peritumoral radiomics features extracted from multiparametric MRI for predicting pathological differentiation in hepatocellular carcinoma (HCC) patients. METHODS: A total of 265 patients with 277 HCCs (training cohort n = 193, validation cohort n = 84) who underwent preoperative MRI were retrospectively analyzed. The risk factors identified through stepwise regression analysis were utilized to construct a clinical model. Radiomics models based on MRI (arterial phase, portal venous phase, delayed phase) across various regions (entire tumor, Peri_5mm, Peri_10mm, Peri_20mm) were developed using the LASSO approach. The features obtained from the intratumoral region and the optimal peritumoral region were combined to design the IntraPeri fusion model. Model performance was assessed using the area under the curve (AUC). RESULTS: Larger size, non-smooth margins, and mosaic architecture were risk factors for poorly differentiated HCC (pHCC). The clinical model achieved AUCs of 0.77 and 0.73 in the training and validation cohorts, respectively, while the intratumoral model achieved corresponding AUC values of 0.92 and 0.82. The Peri_10mm model demonstrated superior performance to the Peri_5mm and Peri_20mm models, with AUC values of 0.87 vs. 0.84 vs. 0.73 in the training cohort and 0.80 vs. 0.77 vs. 0.68 in the validation cohort, respectively. The IntraPeri model exhibited remarkable AUC values of 0.95 and 0.86 in predicting pHCC in the training and validation cohorts, respectively. CONCLUSIONS: Our study highlights the potential of a multiparametric MRI-based radiomic model that integrates intratumoral and peritumoral features as a tool for predicting HCC differentiation. CRITICAL RELEVANCE STATEMENT: Both clinical and multiparametric MRI-based radiomic models, particularly the intratumoral radiomic model, are non-invasive tools for predicting HCC differentiation. Importantly, the IntraPeri fusion model exhibited remarkable predictiveness for individualized HCC differentiation. KEY POINTS: • Both the intratumoral radiomics model and clinical features were useful for predicting HCC differentiation. • The Peri_10mm radiomics model demonstrated better diagnostic ability than other peritumoral region-based models. • The IntraPeri radiomics fusion model outperformed the other models for predicting HCC differentiation.

15.
Inorg Chem ; 63(10): 4628-4635, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38416706

ABSTRACT

In the field of oxide thermoelectrics, perovskite CaMnO3 ceramics have drawn plenty of attention due to their chemical stability, low cost, and environmental friendliness. By employing Ruddlesden-Poppe phase Ca3Mn2O7 as a precursor, the plate-like CaMnO3 microcrystals were successfully synthesized by the molten salt method combined with topochemical microcrystal conversion (TMC). The plate-like morphology of CaMnO3 was coordinately optimized by modulating the crystal structure of MnO2 and the molten salt environment. Plate-like microcrystals with an average size of ∼14.55 µm and a thickness of ∼2.89 µm were obtained by TMC reaction, demonstrating an obvious anisotropy. When ß-MnO2 was used as the raw material, a length-thickness ratio of 4.77 was obtained, which was attributed to the fact that CaMnO3 inherited the plate-like morphology of the Ca3Mn2O7 precursor during the TMC. The results confirm that the plate-like CaMnO3 microcrystals with obvious anisotropy can provide excellent template seeds for high-quality CaMnO3-based textured ceramics.

16.
Membranes (Basel) ; 14(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38392656

ABSTRACT

Osmotic microbial fuel cells (OsMFCs) with the abilities to simultaneously treat wastewater, produce clean water, and electricity provided a novel approach for the application of microbial fuel cell (MFC) and forward osmosis (FO). This synergistic merging of functions significantly improved the performances of OsMFCs. Nonetheless, despite their promising potential, OsMFCs currently receive inadequate attention in wastewater treatment, water reclamation, and energy recovery. In this review, we delved into the cooperation mechanisms between the MFC and the FO. MFC facilitates the FO process by promoting water flux, reducing reverse solute flux (RSF), and degrading contaminants in the feed solution (FS). Moreover, the water flux based on the FO principle contributed to MFC's electricity generation capability. Furthermore, we summarized the potential roles of OsMFCs in resource recovery, including nutrient, energy, and water recovery, and identified the key factors, such as configurations, FO membranes, and draw solutions (DS). We prospected the practical applications of OsMFCs in the future, including their capabilities to remove emerging pollutants. Finally, we also highlighted the existing challenges in membrane fouling, system expansion, and RSF. We hope this review serves as a useful guide for the practical implementation of OsMFCs.

17.
Clin Neurol Neurosurg ; 238: 108191, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422744

ABSTRACT

OBJECTIVE: The objective of this study was to examine survival outcomes in 136 patients with renal cell carcinoma with metastases to the brain who were treated with radiation combined with immunotherapy or tyrosine kinase inhibitor compared to those who were treated with radiation therapy alone. METHODS: The Wake Forest Gamma Knife prospective database was searched for all patients with renal cell carcinoma brain metastases. Outcome measurements included overall survival, determined via the Kaplan-Meier Method, and cumulative incidence of local and distant failure, determined using the Fine Gray competing risks analysis with death as a competing risk for the 136 patients included. RESULTS: Overall survival for the entire population at 6 months, 12 months, and 24 months was 67%, 47% and 30%, respectively. For the TKI (non-immunotherapy-treated) population (n = 37), overall survival was 75%, 61%, and 40% at 6 months, 12 months, and 24 months, respectively. For the immunotherapy-treated population (n = 35), overall survival was 85%, 64%, and 50% at 6 months, 12 months, and 24 months, respectively. Overall survival was significantly increased for patients who received radiation with either immunotherapy or TKI (p < 0.0001). CONCLUSION: Prior series of patients with brain metastases of multiple histologies have demonstrated an improvement in the local efficacy of stereotactic radiosurgery when combined with systemic agents. We found that patients treated with targeted agents and patients treated with immunotherapy demonstrated a trend towards improvement over patients treated in the era prior to the advent of either classes of novel therapies.


Subject(s)
Brain Neoplasms , Carcinoma, Renal Cell , Kidney Neoplasms , Radiosurgery , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Retrospective Studies , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Immunotherapy , Radiosurgery/methods , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology
18.
Pharmaceutics ; 16(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38399258

ABSTRACT

Currently, biomineralization is widely used as a surface modification approach to obtain ideal material surfaces with complex hierarchical nanostructures, morphologies, unique biological functions, and categorized organizations. The fabrication of biomineralized coating for the surfaces of scaffolds, especially synthetic polymer scaffolds, can alter surface characteristics, provide a favorable microenvironment, release various bioactive substances, regulate the cellular behaviors of osteoblasts, and promote bone regeneration after implantation. However, the biomineralized coating fabricated by immersion in a simulated body fluid has the disadvantages of non-uniformity, instability, and limited capacity to act as an effective reservoir of bioactive ions for bone regeneration. In this study, in order to promote the osteoinductivity of 3D-printed PCL scaffolds, we optimized the surface biomineralization procedure by nano-topographical guidance. Compared with biomineralized coating constructed by the conventional method, the nano-topographically guided biomineralized coating possessed more mineral substances and firmly existed on the surface of scaffolds. Additionally, nano-topographically guided biomineralized coating possessed better protein adsorption and ion release capacities. To this end, the present work also demonstrated that nano-topographically guided biomineralized coating on the surface of 3D-printed PCL scaffolds can regulate the cellular behaviors of USCs, guide the osteogenic differentiation of USCs, and provide a biomimetic microenvironment for bone regeneration.

19.
Nanoscale ; 16(9): 4434-4483, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38305732

ABSTRACT

After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.


Subject(s)
Metal-Organic Frameworks , Humans , Drug Carriers , Drug Delivery Systems , Drug Liberation
20.
BMC Anesthesiol ; 24(1): 65, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360531

ABSTRACT

BACKGROUND: Postoperative pain is common in pediatric urological surgery. The study assess the impact of perioperative intravenous infusion of low-dose esketamine on postoperative pain in pediatric urological surgery. METHODS: Pediatric patients (n = 80) undergoing urological surgery were randomized into four groups. Patients in the control group were administered an analgesic pump containing only hydromorphone at a dose of 0.1 mg/kg (Hydromorphone Group 1, H1) or 0.15 mg/kg (Hydromorphone Group 2, H2). Patients in the experimental group were injected intravenously with 0.3 mg/kg of esketamine (Esketamine group 1, ES1) or equal volume of saline (Esketamine Group 2, ES2) during anesthesia induction. Esketamine 1.0 mg/kg and hydromorphone 0.1 mg/kg were added to the analgesic pump. Face, Leg, Activity, Crying, and Comfort (FLACC) scale or the Numerical Rating Scale (NRS) and adverse effects were recorded at 2, 6, 24, and 48 h postoperatively. Additionally, total and effective PCA button presses were recorded. RESULTS: In comparison to the H1 group, the pain scores were notably reduced at all postoperative time points in both the ES1 and H2 groups. The ES2 group exhibited lower pain scores only at 24 and 48 h postoperatively. When compared to the H2 group, there were no significant differences in pain scores at various postoperative time points in the ES2 group. However, the ES1 group demonstrated significantly lower pain scores at 6, 24 and 48 h postoperatively, and these scores were also significantly lower than those observed in the ES2 group. The total and effective number of PCA button presses in the ES1, ES2 and H2 group were lower than that in the H1 group (P < 0.001). The incidence of adverse effects within 48 h after surgery was 15% in ES1, 22% in ES2, 58% in H1, and 42% in H2, respectively (P = 0.021). CONCLUSIONS: The use of low-dose esketamine infusion in analgesia pump can effectively alleviates postoperative pain in pediatric urological patients, leading to a significant reduction in the number of analgesic pump button press. The combined approach of perioperative anesthesia induction and analgesia pump administration is recommended for optimal pain management in these patients. TRIAL REGISTRATION: Chinese Clinical Trial Registry- ChiCTR2300073879 (24/07/2023).


Subject(s)
Analgesia, Patient-Controlled , Hydromorphone , Ketamine , Humans , Child , Prospective Studies , Analgesia, Patient-Controlled/adverse effects , Pain, Postoperative/etiology , Analgesics
SELECTION OF CITATIONS
SEARCH DETAIL
...